
Interpreter Exploitation
Pointer Inference and JIT Spraying

dion@semantiscope.com

Interpreter Exploitation
Pointer Inference and JIT Spraying

dion@semantiscope.com

or How I Learned to Stop
Worrying and Pop the Vista Box

Slides

http://www.semantiscope.com/research/BHDC2010

The Promise (or why to stick around)

I will explain why, despite the many new
exploit mitigations available in Vista/Win7,

you still aren't safe surfing the web on
Vista with IE8 (with Flash Player, but who

doesn't like YouTube?).

The Story so far...

Our protagonist's name is Leon Plazakis

The Story so far...

He has recently been hired as a “Security
Analyst” for Defense R' Us. They contract

to the Highlandia Government.

The Story so far...

His latest top secret assignment is to
design an exploit targeting Charlie Root.

Charlie is secretary to the King of
Midlandia (they suck).

Intelligence

Here is what we know (Leon's gang of
ninja spies told him this):

Intelligence

Charlie has a laptop running XP SP3. He
browses with IE7 and has both Adobe

Flash Player and Adobe Reader installed.

Intelligence

Charlie's IT team is not completely bad. He
is usually up to date on patches.

Intelligence

He isn't clueless enough to run an
executable attached to an e-mail. His
security staff has even convinced him

clicking on links in e-mails is bad.

Well... usually...

Intelligence

He does have one weakness – he loves the
Flash game site “Super Innocent Games.”

SIG is a community run site.

Leon's hacker senses are tingling...

The Plan

Leon is “leet”. He has 368 fuzzers.

So, step 1 – Find 0-day in IE7, Reader, or
Flash.

The Plan

Step 2 – Create/steal a Flash game to put
on the site. He will incorporate the 0-day
and check for Charlie's username before

triggering.

The Plan

Step 3 – E-mail the link from Charlie's old
college roommate via spoofing or hacking
or rubber hose. Charlie always gets new

SIG game suggestions from him.

The Plan

Step 4 – Profit!

Raise! Bonus! Leetness!
(Leon is thinking big)

Plan A – In Action!

After some binary reversing and a few
cups of coffee, Leon finds an IE 0-day (it

works on IE6-8!)

Leon calls it the Faurora bug (after his first
girlfriend)

Plan A – In Action!

Here is his proof of concept:

window.sekretMethod(0x41414141);

call eax ; eax = 41414141

Plan A – In Action!

Leon is now very excited – a simple heap
spray and Leon will have code execution.

Aside: Heap Spray

Do this a bunch
of times (easy to
do in Javascript):

1. Make a big
(really) NOPsled
ending in
shellcode.

2. Hold on to a
reference to this
string.

Plan A – In Trouble!

Uh oh. Leon's luck has run out...

He was adding the last particle effect to
his Flash Gordon game (the host for his

exploit) when a co-worker broke the
news.

Plan A – In Trouble!

Lowlandia attacked Midlandia

Midlandia security is now juiced up.
Charlie will be browsing with IE8. His

laptop has been upgraded to Vista.

Plan A – Out the window!

Leon is leet. He has read about DEP and
ASLR.

Leon considers a farming job.

Aside: DEP

DEP is Data Execution Prevention

This maintains a strict separation between
code and data.

Aside: DEP

Think of it this way:

Microsoft hates Reese's cups.

“You've got your code in my data section!”

Aside: DEP

How does this help?

Hint: Code section aren't writeable.

How do you get shellcode into a code
section?

Aside: ASLR

Address Space Layout Randomization

Avoid determinism in the locations of:
Loaded Images (.exe, .dll)

Heap (dynamically allocated memory)
Stack

Aside: ASLR

Aside: ASLR

Aside: DEP + ASLR

When the two combine...

Hackers everywhere shed a tear.

Back to Leon...

Leon decided not to go work at that hippie
commune.

He started reading...

Learning Montage

Leon reads about a technique called
Return Oriented Programing (ROP)

ROP reuses existing code to build a first-
stage shellcode. By reusing existing code,
it will all be located on executable memory

pages.

Learning Montage

@drraid: I explained ROP to my gf, and
she said "So it's like when you make a

ransom note out of newspaper word cut-
outs?" <-- brilliant analogy [1]

[1] Twitter is great. Follow me.
@dionthegod

Aside: ROP

H

A

K

C

Memory

0xBEEF0000

0xBEEF0A06

0xBEEF0DE1

0xBEEF150C

Aside: ROP

H

A

K

C

Memory

0xBEEF0000

0xBEEF0A06

0xBEEF0DE1

0xBEEF150C

Stack

0xBEEF0000

0xBEEF0DE1
0xBEEF150C

0xBEEF0A06

Learning Montage

Leon thinks ROP is the cat's pajamas.

Unfortunately, with ASLR it is impossible
(well...) to find those letters pieces of

code.

Learning Montage

Leon is leet. He thinks a information leak
that gave him an address could be used to

figure out where the code was loaded.

Plan B

Step 1. Find an information leak.

Plan B

Step 2. ROP

Plan B

Step 3. Profit?

Raise? Bonus?

Leon is no longer thinking big.
Leon doesn't know how to find an info

leak with his 589 fuzzers.

Leon Plans Ahead

Leon decides to have a 3rd cup of coffee
and formulate another plan (Plan C).

You know... just in case he can't find that
leak.

Plan C: The Birthing

Leon has read Alex Sotirov and Mark
Dowd's BlackHat 2008 paper.

Leon thinks it would be cool to find a new
way to spray the heap with executable

pages (like Alex and Mark).

Plan C

Step 1. Find a way to heap spray on
executable pages.

Plan C

Step 2. Exploit as before. DEP no longer
blocks the original exploit – the pages are

executable.

Plan C

Step 3. Profit?

Leon has no place to begin on with this
idea, at first. So, he is less than optimistic.

Where to begin?

Leon has read that Adobe is still
incorporating an SDL into their

development process.

Current products are SDL-less. Leon gets
that tingle again. Leon decides Adobe

Flash Player is a fine place to start looking.

Adobe Flash (Savior of the Universe!)

Through a very cool blog[1], Leon learns
that the ActionScript core interpreter for
Adobe Flash player is open source. More

tingle.

[1] http://dion.t-rexin.org/notes [2]
[2] Sometime before the end of the

weekend, it will be moving to:
http://blog.semantiscope.com

http://dion.t-rexin.org/notes
http://blog.semantiscope.com/

Aside: How Flash “Works”

ActionScript
(ECMAScript)
[JavaScript]

SWF

ABC
(ActionScript Byte Code)ASC.JAR

Flash Player

Tamarin Virtual Machine
x86 Code

Leon has a Flash of intelligence

Leon notices that Tamarin uses tagged
pointers to store ActionScript objects

within the virtual machine.

Aside: Tamarin Atoms

The ActionScript Bytecode encodes a
dynamically typed language.

Objects within the VM have types
associated at runtime. This means all

runtime objects must store both value and
type.

Aside: Tamarin Atoms

One well known technique is to carry
some type information in the least

significant bits.

Aside: Tamarin Atoms

Value

Type Tag

31 3 2 0

Untagged – 0
Object – 1
String – 2

Namespace – 3
“undefined” – 4

Boolean – 5
Integer – 6
Double – 7

Aside: Tamarin Atoms

Some objects store their actual value in
the Atoms value bits (Integers, Booleans);

others store a pointer there (Objects,
Strings, Namespaces, Doubles).

Aside: Tamarin Atoms

The Integer 42 Atom → 0x00000156

42 = 0x2a = b00101010
Integer tag = 6 = 0x6 = b110
Atom = 00101010 110
Atom = 001 01010110 = 0x156

Aside: Tamarin Atoms

Object obj is allocated at 0x0000ffe0
obj Atom → 0x0000ffe1

Object tag = 1 = 0x1 = b001
Atom = 0x0000ffe0 | b001
Atom = 0x0000ffe1

Leon is on a roll

While reading the Tamarin code, Leon
notices a general purpose hashtable. This
hashtable maps Atoms to Atoms. It is also

possible to iterate over the table.

Just one more key fact...

The hashtable uses the value bits of the
key Atom for the hash value.

This means an integer that is less than the
size of the hashtable will be placed at that

offset in the table.

Leon makes the cognitive leap
The hashtable is ordered by Atom value.

The Atom value of an Object is a memory
address. If Atom types can be mixed in

the hashtable, integers are compared to
addresses.

The ordering of a mixed HT leaks
address bits.

Aside: Pointer Inference

n

n + 2

n + 4

n + 6

Object

Aside: Pointer Inference

n

n + 2

n + 4

n + 6

Object

(n - 1)

(n - 1) + 2

(n - 1) + 4

(n - 1) + 6

Object

Aside: Pointer Inference???

All the details are in the paper. Sample
code is (will be) available on the website:

http://www.semantiscope.com/research/BHDC2010

Any questions, shoot me an e-mail.

http://www.semantiscope.com/research/BHDC2010

Leon is leakin'

Leon now has a way to leak many bits of
an address.

Err... What address?

On the heap

The leaked address is “some random heap
address.”

Depending on the type, there are some
controllable fields, but this isn't the

function pointer leak Leon had hoped for.

Leon sees the glass half full

The info leak is nice, but Leon isn't sure
where to go with it. He has a few ideas,

but decides to have a go at Plan C.

Despite the lack of good info leak, Leon is
unflagging in his pursuit of code

execution.

ROP with a typewriter?

While reading about ROP, Leon mused
that it might be possible to use the JIT

compiler engine to create code with useful
bits of code to steal.

Aside: JIT

Just-in time (JIT) compilation is the
process of converting an intermediate
bytecode into native code at runtime.

Aside: JIT

For our purposes, we're talking about
turning ActionScript bytecode into x86

machine code at runtime.

This means we are writing code that is
later executed.

Aside: JIT

“Wait a minute, I thought code sections
weren't writeable!”

Ah. I lied. The OS provides functions to
mark memory as writable, readable, and

executable.

Aside: JIT

The JIT engine allocates sections of
memory and marks them as executable.

These sections are also marked writable
for a short period of time while the JIT

engine writes the machine code.

What was that about a typewriter?

Leon thought it might be possible to
coerce the JIT engine to spit out code that

contained useful code in the constants.

RET all up ins

ROP relies on RET (0xc3) values – Leon
wanted to pass immediate values to the

ActionScript that contained the 0xc3.

Leon makes a(nother) breakthrough

He starts by feeding a single constant
integer to the ActionScript interpreter. By

watching the JIT results, Leon hopes to
find that it passes through unchanged.

Constant values!

Leon passes this to the ActionScript
compiler:

var f = function () {
 var a = 0x00414141 ^
 0X00424242;
 return a;
};
f();

Constant values!

Leon sees this produced by the JIT
compiler in the Tamarin VM:

mov eax, 0x00414141
xor eax, 0x00424242

Leon envisions profit

After some experimentation, Leon realizes
that this code pattern can be extended

arbitrarily – a long XOR expression in
ActionScript will result in a very compact

x86 instruction stream.

Leon gets a better idea.

A better idea

What if Leon could point EIP into the
middle of this JITed code? What if he

could encode all his shellcode into those
immediates used in the XOR expression?

Leon *really* smells the profit.

Aside: JIT Crafting

Let's go back to the sample code:

var f = function () {
 var a = 0x00414141 ^
 0X00424242;
 return a;
};
f();

Aside: JIT Crafting

Remember, that code was turned into this:

03470069: mov eax, 0x00414141
0347006E: xor eax, 0x00424242

Or:

03470069:
B8 41 41 41 00 35 42 42 42 00

Aside: JIT Crafting

Imagine entering at 0x0347006A instead
of 0x03470069.

Execution would be attacker controlled
opcodes.

Now, we need to find a way to ensure
execution continues along this attacker

controlled stream.

Aside: JIT Crafting

The MOV and XOR instructions are single
byte instructions. If the last byte of the

attacker controlled immediates (aka MSB)
were a semantic NOP instruction that

required a single byte operand, those MOV
and XOR instruction bytes would be

skipped.

Aside: JIT Crafting

B8 D9D0543C mov eax, 3C54D0D9
35 586AF43C xor eax, 3CF46A58
B8 D9 D0 54 3C 35 58 6A F4 3C
D9D0 fnop
54 push esp
3C 35 cmp al, 35
58 pop eax
6A F4 push -0C

Tiny Shells

Leon now knows how to write
ActionScript such that if he redirects EIP to

the middle of the JIT output, he gains
arbitrary execution.

He has to code 1-3 bytes at a time. Not
impossible, just painful.

Stage-0?

Leon notices the JIT code will contain the
Object pointer if used in the function and

also contains function pointers in the Flash
Player binary.

Using these pointers, Leon writes stage-0
shellcode (1-3 bytes at a time).

String Execute→

The stage-0 shellcode marks a region of
memory executable using the function
pointer to calculate the address of the
VirtualProtect call in the Tamarin VM.

Then it copies the value of an ActionScript
String into this region and jumps to it.

Address?

Leon is happy.

His next step is to find a way to fill
memory with these JITed functions.

With a large spray, he should be able to
predict an address that contains his

Jishcode.

Aside: Jishcode

JITed code that contains that stage-0
shellcode.

Jishcode.

Leon looks at loaders

The ActionScript API contains calls to
dynamically load SWF files from network

resources and from ByteArray objects.

Leon's first idea is to create giant in
memory SWF files with loads of identical

functions.

Leon sprays instead

Leon comes to his senses and realizes it
would be far easier to repeatedly load the

same SWF with a single function.

As long as a reference to that function is
maintained, the JITed code will stay in

memory.

Leon quickly integrates

Leon quickly integrates this exploit code
with the Flash Gordon (Yes, the movie

from 1980) based game he designed from
Plan A.

Leon is the picture of joy

It works!

Leon rejoices. Leon celebrates.

Dion demos.

Leon shows his boss

Leon's boss wants to justify the time spent
developing the hashtable leak.

“Leon, can you use the leak to reliably gain
the address of one of the JITed regions?”

When Leon's boss asks a question, it
means he wants a real answer.

Leon gets cozy with the Tamarin Heap

Leon spends sometime reading Tamarin
code.

He puts instrumentation points into Flash
Player to make sure he understands.

Leon gets that look in his eye...

Aside: Tamarin Heap

The Tamarin VM implements its own heap
on top of the OS VM calls.

The heap is similar to the Windows heap.

Aside: Tamarin Heap

Smallish requests are tried in the
appropriate bucket of like sized pieces.

If a large request is needed, or the bucket
style allocator cannot make one available,

the heap expands.

Aside: Tamarin Heap

The heap attempts to expand
contiguously and tries to allocate
0x01000000 bytes at a time.

Leon's Steps to Success: 1

Open an SWF with
enough bytecode to
force an allocation
of 0x01010000

Leon's Steps to Success: 2

Allocate many small
ActionScript

Objects. Force the
heap to grow past

the big block.

Leon's Steps to Success: 3

Open an SWF with
enough bytecode to
force an allocation
of 0x00FF0000

Leon's Steps to Success: 4

Release that first
SWF.

Leon's Steps to Success: 5

Spray more than
0x01000000 of small

ActionScript
Objects.

Maintain these in a
linked list style

structure.

Leon's Steps to Success: 6

Perform a JIT spray.

Each script will be
small and reserve

the minimum
(0x00010000 bytes)

Leon's Steps to Success: 7

Iterate over that
linked list from step
5. Performing the
pointer inference.

Leon decides “Nah”

Leon figures 8 minutes is too long to wait
– his Flash Gordon game isn't THAT good.

He tells his boss no.

His boss doesn't care.

Leon get's that promotion. Leon wins.

Mitigation mitigation mitigations

How do we prevent JIT Spraying?

Disable JIT.
Make the output non-deterministic.

Mitigation mitigation mitigations

How do we prevent this weird leak?

Use an XOR cookie to scramble the
reference atoms in the hastable? (Thanks,

antijon)

Make the iterator go over all keys of the
current type before iterating over keys of

the next type? (Thanks, Eric)

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

